Let’s talk about carbon

If we’re going to attract the life forces that agriculture feeds to human society as a whole to keep it alive, then we have to collect carbon.

Let’s talk about carbon. Carbon is associated with the earth element, and of course we’ve got water, air and fire as well. Sometimes carbon is called the Philosopher’s Stone. The hardest substance on earth is diamond, made from carbon. It’s also the framework for all living organisms, and it’s the magnet for hydrogen. So anytime we’re talking about conserving water then we need to talk about carbon because water will evaporate into the atmosphere – it will drain away and leave the landscape – unless there’s carbon there. Carbon attracts rainfall out of the sky. Carbon holds onto the water in the land, and carbon is what the chemistry of water works upon. So when we’re looking at what accumulates life-energy, it’s carbon.

When Wilhelm Reich did his work with orgone accumulators, he found carbon was the basis of orgone accumulation. Metal was the way of conducting it, but to attract it you had to have carbon. Carbon is the earth element, it’s the anchor for whatever we’re going to do in terms of building life into the landscape. And of course agriculture is what we’re doing to give life to our society. As far as the sociologists are concerned they know very well that we live in an agrarian society today, the days of the hunter-gatherers and whatnot are just not what’s mainstream anymore. Agriculture has given us the division of labor and the abundance, the savings of being able to specialize. So with the advent of agriculture, we had the rise of civilizations. Now here we are.

If we’re going to attract the life forces that agriculture feeds to human society as a whole to keep it alive, then we have to collect carbon. If we’re not collecting carbon with our agriculture, if we’re somehow or another dispersing the carbon, burning it up, exhausting it, robbing our soils of it or whatever then our agriculture is going to crash. Now carbon is the gold of our environment. What about the idea of the Philosopher’s Stone turning something to gold, turning base metal into gold? Carbon is what does that in terms of what’s the most valuable to us in our society – and that’s life. Carbon is what conserves life, draws in life, it accumulates life. When we’re talking about making agriculture free, we’re talking about building up carbon in our soils, accumulating carbon and being able to have a surplus of carbon so that we can harvest it from our farms and give it to people in our markets, in our restaurants and our dinner tables so that everyone has sufficient life in order to be healthy and happy. So it’s carbon that’s the wealth of our society.

The question is how do we accumulate carbon? Photosynthesis accumulates carbon from the carbon dioxide which is the free carbon in the atmosphere. It draws in carbon dioxide and turns that into sugar which is the basis, the framework of all of our carbohydrates. It of course also combines with nitrogen to make proteins. Oxygen organizes carbon in carbon dioxide and puts it out there everywhere for free. Photosynthesis unites water and carbon dioxide to make sugar, and it releases oxygen then to go off and organize other things.

Anytime we want to accumulate carbon what we have to do is to encourage photosynthesis. Whether it’s algae on the surface in the desert or algae on the surface of the ocean or it might be plankton in the ocean, they’re big carbon accumulators. But whatever it is, we accumulate carbon through photosynthesis. Photosynthesis – the capture of fire, you might say – and the building of a carbon framework, allows us to accumulate carbon in the landscape. Right now today on the planet earth we’ve got more carbon dioxide in the atmosphere than in any other time that we know of. We’re in a period of great wealth if we want to accumulate carbon because it’s everywhere, it’s free.

Hugh answers Ibo Zimmermann, Deputy Director Agriculture and Natural Resources Sciences Namibia University of Science and Technology

Dear Ibo,

How biodynamic does a farm have to be to be biodynamic? Here is what Rudolf Steiner had to say about farms:

A farm is true to its essential nature, in the best sense of the word, if it is conceived as a kind of individual entity in itself — a self-contained individuality. Every farm should approximate to this condition. This ideal cannot be absolutely attained, but it should be observed as far as possible. Whatever you need for agricultural production, you should try to posses it within the farm itself (including in the “farm,” needless to say, the due amount of cattle). Properly speaking, any manures or the like which you bring into the farm from outside should be regarded rather as a remedy for a sick farm. That is the ideal. A thoroughly healthy farm should be able to produce within itself all that it needs. (Agriculture, Lecture II)

 

What I’ve found is the most important part of a farm is its boundaries. That’s like our skin is our most important organ, without which our inner organization would neither arise nor maintain itself. You could plant casuarina trees along the boundaries and horsetail like hair in the ditches and dykes, and that would really help the farm to be self-sufficient, but how are you going to delineate the boundaries of experiment plots so they are comparable to rice paddies on biodynamic farms? My smallest rice terrace was somewhere around 7 to 8 square metres and my largest would have been more like 50 square metres. The dykes were in grass, clover, dandelions, plantain, and other ‘weeds’ that got mowed occasionally (maybe once a month) with a lawnmower. You could have used a whipper snipper. All my local frogs, from the huge bull frogs to tiny tree frogs reproduced in the rice terraces, which were teeming with life. My old farm cat developed a taste for the young bull frogs and couldn’t wait to catch them at the boundaries. She stalked them through the rice. She would emerge slathered down in mud and algae with a frog in her jaws. Her tongue bath and toilet afterward must have been a lot of work, but somehow she reckoned it was worth it–there was a really strong life going on in those terraces and the frogs must have tasted really delicious. Being from South Louisiana I never ate frogs legs raw. I always dipped my frog legs in an egg batter and dredged them in corn flour and seasoning to fry them. I never tried the frog legs from my rice terraces because I didn’t have enough rice swamp to have a night-time frog gigging party with headlamps and tridents like we had in Louisiana. But with a few acres of rice instead of a mere 120 square metres we could have had parties–a great place to grow frogs and crayfish.

 

I paint this picture above to illustrate how difficult it might be to plant one or two experiment blocks of biodynamic rice in a larger context of test plots including control plots where nothing is added or taken away. If you stir up a complex made from all the biodynamic preparations and apply this to the biodynamic plot or plots how can you keep the effect from this tone-like resonance from affecting nearby plots? And where will you get your biodynamic ecology of algae, azola, tadpoles, birds and all sorts of other aquatic and flying species and still keep them away from the other plots including the controls? I’m not saying give up and forget it. And I’m not saying you can just ignore the spill-over effects from one block to the next. You’re going to have some spill over and you’re going to have some challenges in establishing a biodynamic ecology from the soil food web up. You’re going to have to consider that biodynamic farms generally show almost triple the conventional concentrations of fungi, bacteria and protozoa, to say nothing of ants, earthworms and other higher animals–and the same with ‘weeds’ or companion plants like legumes in the rice. No. You’re going to have to do the experiments and see how much of an ecology can be imparted to the biodynamic plots and how much this can be kept separate form the other experiment plots. And the final conclusions of the experiment will need to acknowledge the limitations and challenges of the experimental methods and show how these were dealt with. Go for it, but don’t expect it to be easy.

 

To help get a fuller picture of what biodynamic farming is about I’ve attached a copy of Steiner’s agriculture lectures, Georg Adams translation. It is the earlier translation (1938) and in some respects is more poetic than the Creeger/Gardener translation which dates to the 1990s. You can also go to Rudolf Steiner audio and download an audio version of the Agriculture Course that you can listen to while driving or whatever.  http://www.rudolfsteineraudio.com/agriculture/agriculture.html

The researcher doing the rice might delve into these resources as well. Biodynamics may have resisted conventional research by virtue of its complexity. It is a comprehensive system of agriculture and it works best as a comprehensive system. Anything less will fail to show biodynamics in the light it deserves. A lot of biodynamic concepts, such as the importance of silica, can be very useful in conventional agriculture as well. For example, the USDA did research that compared the use of potassium silicate (an industrial product) with various fungicides. Even though potassium silicate is not a fungicide (it doesn’t kill fungi on contact) it prevented fungal diseases in wheat, carrots, tomatoes, potatoes better than any of the fungicides tested. Somehow the USDA refrained from blanket publicity of this fact, I suppose out of consideration for the welfare of makers of commercial fungicides.

 

Best wishes,

Hugh Lovel

Youtube of Hugh teaching Biodynamic Association of Namibia

https://www.youtube.com/watch?v=gm5nKDUBElY&t=1661s

Hugh Lovel New Book  

Quantum Agriculture:   Biodynamics and Beyond  

http://quantumagriculture.com/quantum-agriculture-biodynamics-and-beyond

 

Weather Moderation: Drawing Rain Using Biodynamic Preparations

Biodynamic Preparations and Drought

Hugh Lovel

How certain notions arise and become entrenched is a bit of a mystery, especially when they are wrong. Yet they do get started and entrenched. One of these is the belief that when things dry up and little moisture is available we cannot put out biodynamic preparations—as if these were delicate microbial cultures that must have moist conditions to establish and thrive. This is so far from true it seems impossible that it ever got started. Yet it did.

Essential Oils in Plants using Biodynamic Preparations

Dear Hugh and Shabari,

Trust you enjoyed your trip to SA and will return with more of your wisdom. I heard talk that we could receive the recording but this did not happen??

Please could you help me understand the biology or process of oil production in plants. Rosemary or Rose petals for instance…. I am interested in Essential oil production and need to understand the inner processes so as to know which one and when to apply our field sprays to maximise this production ; I would guess 501 one or two days before and harvesting… I assume that oil is highest before flowering, the flower sign before full moon or just after… and time of the day according to the ‘rulership’ planet of the plant taken from Culpepper. Would a single spray of one of the compost preparations be of benefit and if so ‘when’ and why?.

In truth, I do not actually know how to work out this influence of the ruling planet. Does it mean when the planet is in opposition to the Moon? or a trine involving that planet… ? Which is more powerful?

I understand that Nettle as a companion plant increases the oil content. Why? what is it about Nettle that does this? I have also been told that Yarrow does the same. ?

Any information on this subject would be greatly appreciated, or a reference/book etc.

Kind regards,

Avice Hindmarch.

Dear Avice,

Thanks for asking the right questions. Though I don’t know what your levels of essential oil production already are, I feel sure you can raise them if you put a little more effort and a lot more use of biodynamic preparations into it. Let’s look at correspondences between the various preparations and the processes involved.

500 — lime, digestive (transformative), earthly, gravitational processes
501 — silica, formative, cosmic, levitational processes
Horn Clay — intensifies both cosmic and earthly processes by working with that truly cosmic element, boron, to improve sap uptake and root exudation (Sap must go up in order to sink back down, and root exudation is what feeds nitrogen fixation)

502 — yarrow flowers in stag bladder, strongly intensifies boundaries (organization arises at boundaries), sulphate of potash, Venus, concentration and excretion of spent nitrogen as uric acid.
503 — chamomile flowers in cow intestine, intensifies protozoal digestion around plant roots that supplies amino acids and mineral complexes to plants, lime complex and amino acids, Mercury, provides the nutrient stream for cell division.
504 — Stinging nettle leaf and stem, charges or intensifies plant sap with organization (nettles are 36% protein and rich in every mineral, especially magnesium and iron) Sun, intensifies circulation and enriches the blood process. Jack of all trades, helps everything, central to organization.
505 — Oak bark in cow skull, densifies structural processes and reduces the tendency of amino acids to lose their organization and nitrify or become dead nitrogen. Works with both silica and calcium as bone cells are silica framework filled by calcium. Moon, works on both the skin and bones and provides dense, structural strength. Use in conjunction with horsetail for wet conditions where moon forces are strong but disorganized.
506 — Dandelioin flowers in cow mesentery, enhances fruit development working with the embrionic fruit’s potassium gateways in its silica cell walls to facilitate the uptake of amino acids and minerals responsible for cell division in early fruit development. Jupiter. Responsible for size and fullness of fruit.
507 — Valerian flower juice, works with phosphorous metabolism and oxidative processes occurring in flowering, as with lungs and haemoglobin in blood oxidizing carbon in muscles. Mars. Enhances flowering process in plants.
508 — Horsetail decoction, works to strengthen silica forces in cell walls, surfaces and transport vessels. Saturn. Enhances photosynthesis, integrity and immunity.

Perhaps this will help guide you in the use of preparations in various weather and soil conditions and at various stages in plant development. For example, stinging nettle can more than double essential oil production by its Sun-like rich, jack of all trades, capacity to organize things. But if you are having a wet, overcast spell of weather you will also need oak bark (Moon) and horsetail (Saturn). Since essential oils are like an excretion from plant cells, yarrow (Venus) will specifically target this process at the cell walls (boundaries) where it occurs.

Best wishes,
Hugh Lovel

Ending Global Warming

“You can’t be free when you depend on someone else for your food.” –Wendell Berry

News Flash: Man-made warming may have begun earlier than we thought
Gayathri Vaidyanathan, E&E reporter
ClimateWire: Thursday, August 25, 2016

Before gasoline-powered cars crowded roads, before even the first coal-fired power plant was built in the United States, humans had begun warming Earth’s climate.
By 1831, the signals of man-made global warming could be seen in the Arctic and the tropical oceans. By 1850, all of the Northern Hemisphere was warming. The Southern Hemisphere followed a half-century later. On the continents, people were clearing land, building railroads and mining coal at the start of the Industrial Revolution. That is when global warming began, scientists announced in Nature yesterday.

Part I: Agriculture and Global Warming

Potentially agriculture could repair global warming by catching and sequestering warmth, light and carbon dioxide. It would do this without subsidies because working in co-operation with nature is cheaper and easier if farmers only learned how. Vegetation is the answer. However, the common cultural belief is we must bare more and more soil, plough, erode, and wage war on nature with chemicals to feed the world’s increasing billions.

The story we are told by those at the top of agricultural industries and commodity traders is the world will run out of food if we don’t ratchet up the war on nature—even though the farmers doing this are drowning in debt, crippled by world surpluses and forced to take prices below their production costs. Meanwhile, first world populations mow their lawns every week, pull weeds and herbicide traffic ways. Bare soil is perfectly acceptable. The warmth and light this contributes to global warming goes unnoticed even though anyone in summer with bare feet walking on bare sand, soil or pavement should recognize bare surfaces are a leading cause of warming. Bare soil keeps increasing and agriculture is chief among its causes. Any alien visitor from outer space would look on this with disbelief. In some places herbiciding roadsides is mandated by law, as though making war on nature is politically correct, desirable, justifiable and somehow beautiful.

Just about everywhere environments are spiralling towards chaos. Weather is driven by warmth. Free warmth and light—given off from bare surfaces—slowly drives our weather systems to greater and greater extremes. If there is any reason for shame, it is turning the soil over and leaving it exposed to die. But shame and justification fall short of remedy.

It’s more empowering to ask how farmers can make a difference. Many examples show things could be other than the present. Agriculture is a two-edged blade. One might even say agriculture is central to global warming—both the unwitting cause and the potential solution. We need clarity about how nature works, how to feed nature’s armies of plants and animals, and the benefits that result. We can improve how we handle atmospheric cycles, and the nitrogen, oxygen, carbon, hydrogen and sulphur the atmosphere contains. Though this may sound complicated, it is really quite simple. An historical look at how this occurred may help.

Part II: An Historical Overview

“Maybe some readers find that I have expressed my convictions with too great of a frankness, that I have not always been polite enough. But the times are so serious in which we are living, that if we want to make any impression at all, we must speak in strong terms.” –Lilly Kolisko, Agriculture of Tomorrow

With farming came tillage, erosion and a host of problems as soil life was lost and restoration of soils failed. Re-vegetation is essential to store up warmth, light, water, CO2 and proteins as soil life, resulting in balance, vitality, health and, hopefully, self-realization. The alternative may be extinction if all we do is accept environmental degradation.

Middle Ages to 18th Century Europe

Back in the old days ploughs were made of wood, usually shod at their tips with metal. These ploughs wore out rather swiftly, and the modest damage they wreaked on the soil food web up through the 18th century was fairly sustainable.
Shallow ploughing and harrowing produced a good seedbed for hand sown crops, which benefitted from the nutrient release that followed. As long as the soil food web’s microbial life restored itself tillage was little more than a scratch on the arm. There wasn’t much concern about fertility or weeds. When weeds occurred, folks took an interest in using them. This retained diversity, keeping soils healthy and vital. For the most part farmers built fertility by grazing, storing up warmth, light and carbon as humus. Bare soil was occasional and brief.

As industry awakened, steel ploughs started coming into use all over Europe and its colonies. By the end of the 18th century folks had learned to turn over the soil with their new, sharp mouldboards that left entire fields of bare earth in their wake. Farmers ploughed more and deeper. Teams of animals pulled these steel ploughs and harrows, and at first this seemed far better as long as the soil food web was ignored. Yet this began to liquidate the better part of soil life, draining momentum from the soil’s humus flywheel. The increased release of nutrients led to higher production in the short term, but in the long term this exploited the soil’s fertility—selling off key capital and treating it as income. These were the seeds of soil bankruptcy.

19th Century

As the 19th century proceeded, fertility declined, even where livestock residues were returned to fields. Better equipped estates with more horses ploughed deeper, and tended to have faster fertility losses, particularly on light soils. Even so, with deep, rich, black soils this seemed sustainable. With mechanical sowing and reaping the nineteenth century saw improvements in crop yields while more and more territory was laid bare. Agriculture subscribed to a treadmill of borrowing from its future.

Obviously, at least to some, when you found an old, well-managed pasture, you could expect good yields the first year you ploughed it and released that sweet, clean Actinomycete smell while wrecking the soil food web. It smelled and felt great, but the penny didn’t drop about the damage and loss. Instead standard practice was to grow a cover crop and plough it down prior to planting a following crop for harvest. Ploughing vegetation under was problematic, as burying cover crops caused purification that encouraged weeds, insects and diseases. Nevertheless this also produced a temporary lush effect that seemed restorative. Cover cropping made up for some of the losses while slowing the apparent decline, but not much changed. Ripping up the soil food web and leaving the soil bare ran the soil down.

In those days most ploughing involved ploughs that turned the soil over. There were debates about the relative worth of ploughing shallow or deep. Deep ploughing buried plant residues where there was little oxygen. In response some folks stood their sods up rather than ploughing them over. This was messier and didn’t produce as smooth a seedbed, but some felt it was healthier and better for soil life. In some places farmers formed the soil up in ridges and planted in the ridges. The extra oxygen boosted crops, but ploughing still impaired nitrogen fixing capacity and wrecked the soil food web.

20th Century

Chemical war on nature got in full swing with the birth of the ammonia industry in 1907, while mechanical tractor power enabled chisel ploughs to rip through the soil food web without turning. This left much of the vegetation and trash on the surface, limiting wind and water erosion while allowing the soil food web some chance for recovery—unless soil sterilants like anhydrous ammonia or potassium muriate were applied. But there also were rototillers which completely churned through the soil, destroying whatever structure there was—even where anhydrous and muriate were not used.

The last half of the 20th century really shut down the soil biology with bigger and bigger machinery and round after round of toxic chemistry. Soluble soil testing, which ignored soil reserves, became the fertiliser industry’s tool of choice to sell NPK salts. Yet, the more these salts were used the less fertile the soil became. Organic growers followed this model. They substituted organic inputs for chemical ones, but they too bared the soil and lost fertility.

Throughout this de-evolution, farmers were fascinated with cutting into the soil food web and smelling the rich, fertile smell of Actinomycetes while preparing their seedbeds. Chemical-free succession planting with minimal tillage and humified compost crossed almost no one’s mind. Everyone wanted to prepare a smooth seedbed. Almost no one sowed a mixture of seeds onto the soil and grazed, mowed or rolled down existing vegetation—even throwing down a bit of mulch in bare spots—knowing that something would grow as long as the soil was covered. Lost in the mists of antiquity, the idea of maintaining soil cover was so new it was ignored.

Now comes the question, can 21st century agriculture address the roots of the problem?

Part III: Meeting the Challenge

Change in agriculture is up against the likes of D.C. Edmeades, Hamilton, New Zealand, author of a lengthy paper entitled Pseudo-science: a threat to agriculture? (http://www.mannkal.org/downloads/environment/2011conferenceinvitedp.pdf)

Edmeades brandishes the buzzword “pseudo-science” 37 times in a ten page paper intended to slander Dr. Christine Jones’s admirable work on soil microbiology, cultivation, artificial nitrogen fertilization and carbon sequestration—topics much in need of investigation if we are to arrest the alarming weather trends threatening our economy, safety and well-being. He trots out the fallacious assumption that we must put more land under cultivation to feed world population. And his arguments for continuing the NPK/toxic approach show his 19th century understanding of chemistry hasn’t caught up with cutting edge soil biology, biochemistry and biophysics. He makes no mention of quantum mechanics and chaos theory. He would replace what he calls “pseudo-science” with something illogical and unsustainable that has long been refuted, outdated and surpassed. His paper is replete with references, graphs, sophistries and scientific double-talk designed to confuse the unwary and uninformed.

Inertia to Change

Top agricultural authorities whose livelihoods depend on current agricultural practices tell us the world will run out of food if we don’t keep intensifying the war on nature, disregarding how this devastates soils, pollutes ecosystems and fuels global warming. Yet, the further we go along this path the closer we come to tipping points where the earth’s self-correcting life support systems spiral out of control.
Evil exists to awaken our appreciation of good. The pity is we often wake up when what is good is gone. What is obvious is we need to reverse the degradation of the land already under cultivation and improve its productivity. To do that we need to reduce mechanical cultivation, nitrogen fertilisation, contamination, erosion, overgrazing, monocropping, deforestation and desertification while we improve ground cover, build soil biology, restore nitrogen fixation and practice controlled rotational grazing, biological no-till and diverse intercropping—all proven alternatives. If, along the way, permaculture and biodynamics give us tools with which to achieve these ends with ease and grace, what could be better?

What Nature Does

What nearly everyone missed, as agriculture borrowed from its future, was looking at how nature works. Nature builds fertile soils without ploughing as farmers do. Nature’s army of soil workers come up to feed and breathe, and then tunnel down again, aerating the soil in the finest ways wherever they go. In the daytime, most of these animals hang out in the near vicinity of plant roots where the soil biology is rich. When pooping and peeing they give the soil food web freshly digested remnants of what they consumed at the verges of their sub-surface habitat. This feeds new growth at the finest level while recycling surface litter in a steady way. Left to itself, nature’s intelligence cultivates the soil in ways we can’t duplicate. What we can do is support nature’s work.

Look at earthworms munching on decaying roots, leaves, microbes and other tasty morsels. They require oxygen to metabolize what they eat, so when need arises they eat out air passages and cast off the soil they excavate at the surface. Although soil animals give off carbon dioxide from the foods they consume, they oxygenate the soil as they travel. Many earthworms prefer a bacterial diet, though some of the larger types prefer fungi. Yet ants are the best fungal farmers, complementing earthworms while building and regulating the soil food web’s activities.

Application

When the Masanobu Fukuoka* and Alan Savory† visions of building a living blanket to regenerate the earth came along with diversified no-till summer/winter cropping or grazing, most mainstream farmers dismissed this as nonsense and impractical. The gulf between their cultural beliefs and how nature actually works was too great. Yet, a few serious, large-scale farmers and stockers used these ideas to regenerate their farm and livestock operations, thus building a partnership with nature that improved yields and lowered costs.

There it was—plant with as little disturbance as possible while feeding, balancing and enriching the ecology. Harvest warmth, light, water, carbon dioxide and nitrogen out of the atmosphere for free. While academics ignored such stuff, these early pioneers proved storing warmth and light in the soil’s humus flywheel worked. Foreseeably this would continue to build life into the environment into the future.

Although often ignored, humus acts as a magnet for hydrogen, especially when this prince of protons is in the form of water. Carbon attracts hydrogen. That’s basic chemistry. When plants cover the earth’s surface, they soak up warmth, light, CO2 and H2O, fixing nitrogen and improving rainfall.

Obviously if planting trees restored forests this would help arrest global warming. It may seem a no-brainer to oppose coal mining and plant trees. The worry is forests build their carbon onto the soil, which makes them subject to harvest and fire. Holistic pasture management builds carbon into the soil as humus. Environmentalists on the one hand, and conventional farmers on the other, need to shed their misconceptions and join forces. Prejudice is our enemy. Grazing livestock is only a moral problem if we don’t do it constructively.

Part IV, There Can Be an Answer, Let It Be

“A leader takes people where they want to go. A great leader takes people where they don’t necessarily want to go, but ought to be.” –Rosalynn Carter

What built the world’s most fertile prairies, steppes, savannahs and plains were herds of animals and their predators. Unassisted, nature isn’t going to re-forest the Sahara without first growing pastures, because forests only occur where rainfall is abundant. Observation, the basis of intelligence, shows periodic intensive grazing is the opposite of confinement animal feeding operations (CAFOs). The true costs of CAFOs and their stream of environmental pollution, waste and suffering are not all paid at the supermarket, but rather in physical and social dysfunction.

Though the Sahara was forested 15,000 years ago, today can we re-plant such forests without first improving rainfall and water retention? We will have to re-vegetate step-wise, as forests require lots of rain. We need grazers and chicken herders to store carbon in pastures with well-run pastoral operations. We can grow grass quicker with less water in less time than we can grow forests, and grass stores carbon in the soil. Pastoral animals maximize biomass gains when they eat old growth and recycle it as fertilizer while making way for new growth.

The Path

The regenerative practices of farmers who pay attention and cooperate with nature are cheap and productive. Though it takes intelligence and hard work, the quality of what these farmers send to markets is superior. At the same time they cure rather than contribute to global warming. As farmers and environmentalists learn to read from the book of nature they will discover the best practices of restorative farming, grow quality products and prosper from their partnership with nature. Meanwhile regenerative farmers can take advantage of collapsed ventures that extracted value and left an empty husk behind for somebody who knows how to use it. Look ahead to the glass half full and see revegetating as an opportunity we need to embrace.

Our job is to open public eyes and show that the true cost of the war on nature is hidden in plain sight, and it will dawn on everyone in time. The simple efficiency of working with nature to build a thriving, long-term, regenerative agricultural base will change agriculture. It is expensive to wage war with nature, and the will to continue along these lines is dying. Already first world agricultural universities are running out of new blood for this agenda. Why? Current practices lock participants into spiralling debt, toxic technology and soil degradation—more subtle but comparable to living in a battle zone. Fresh out of high schools, today’s students don’t want careers in a hazardous, toxic, depressing, morass of debt.

More and more examples show how vegetation on the earth’s surface soaks up warmth, light and CO2—which otherwise fuel global warming. New farmers need only realize their opportunities to educate themselves. The information age ensures the necessary information is accessible as long as farmers are discerning of truth. The farmers of today and tomorrow have an opportunity to take up nature’s bounty of nitrogen, carbon, hydrogen, oxygen and sulphur and turn these gifts of the heavens into the means for social health, wealth and happiness.

In A Nutshell

It’s urgent we understand how nature works. Nature is a system. Everything is interwoven and interactive at the finest levels everywhere. Farming starts with the soil food web and interacts with everything all the way to the farthest stars. Life processes start with hydrogen, which is everywhere and in all things. Hydrogen joins with carbon, cinder of the first stars, and its siblings, nitrogen and oxygen. With a little help from a few soil minerals, sulphur, the catalyst, along with hydrogen, carbon, nitrogen and oxygen—free from the atmosphere—incorporate warmth and light as living protoplasm.
Nitrogen is an amazing player. As the basis of awareness, memory, sensation and desire, it forms the genetic blueprints for life and its reproduction. Carbon provides the framework, as we are all carbon based life forms. Like money in the market, oxygen is life’s medium of exchange, the basis for activity. Since organization arises at boundaries and organization is the basis of life, hydrogen with its infinitesimal content and infinite context is the universal source of organization, the basis of life. Plants take in CO2 and give off O2. Animals take in O2 and give off CO2. With sulphur for ignition, we have nature’s chemistry in a nutshell.

We can also talk about the five percent of biomass that comes from the soil—the cations, sand, clay and humus that interact with the atmosphere’s free gifts which make up the other ninety-five per cent of our biomass. There’s never been greater opportunity to cover the earth’s surface with living organisms, soak up warmth, light and CO2, maximizing vegetative growth and digestive activity. This will end global warming.
When market forces drive change, the rest will follow. Re-vegetate the earth at every opportunity. Seize the initiative. Build life back into the land. Pioneer a new agriculture in partnership with nature. Invent a new way of farming that knits together well-meaning but misguided sectors of society. There’s a long road ahead with health, wealth and satisfaction along the way. My book Quantum Agriculture, Biodynamics and Beyond is an early step in this direction.

Humus Flywheel Effect

There is a common belief that humus is the result of the breakdown of organic materials in the soil. While this is true it is less than true because the organic materials do need to break down into simple organic compounds—and from there they need to be built back up again into large, complex carbon molecules by soil organisms whose role is to store nutrients for rainy days. These organisms, primarily actinomycetes and mycorrhizae, work in tandem with plants, storing humic acids in an easy to access form. Humic acids are too large for most organisms, such as bacteria, to absorb. Yet they are accessible to the actinomycetes and mycorrhizae and thus are insoluble but available nutrients. And that’s how we want nutrients in the soil—insoluble so they are not easily lost when it rains, but available.

The NPK theory that all soil nutrients must be soluble all at once is rather like feeding a pig six months’ worth of slop in one meal—initially it is too much. Try though the pig will, he can’t handle it all. As time goes on the banquet sours and the pig is left lacking a balanced diet while flies, yeasts, moulds and various pests move in. This is modern agriculture, and it’s not a pretty picture—you wouldn’t feed your kids that way. Surely, plants are more resilient than pigs, but as living organisms they aren’t that different.

Basically we do not want most of our nutrients to be soluble. Rather, we want them to be insoluble but available. A plant can only consume a small amount of its needs every day. Having more soluble than the daily optimum in the near vicinity of uptake roots invites unwonted guests to the table, and this creates unnecessary problems for crops. Nature, left to her own devices, provides insoluble but microbially available nutrients in the humus flywheel. Crop-symbiotic micro-organisms mop up loose nutrients and store them in the humus reserve in large, carbon complexes. Acting like bees storing honey, they maintain this nutrient reserve. Photosynthesis and root exudation feed the microbes that stock this storehouse when conditions are good, and when conditions are poor these microbial plant partners—along with protozoa—draw energy and nourishment from the humus reserves to feed the crop.

The Humus Flywheel

This reveals humus as the soil’s flywheel to keep plant growth going by feeding the digestive activity around plant roots. Humus sustains this microbial activity by providing uptake of a steady stream of quality amino acids and mineral complexes—like mother’s milk—that makes it easy for crops to assemble their proteins and grow, photosynthesize, and make nectars that are shared with the soil as root exudates—like honey. These root exudates provide energy for soil microbes that unlock minerals, fix nitrogen and feed the soil’s digestive activity—which in turn provides a milky, mineral amino acid rich feed for growth. Observation of this millennia old interplay in nature is honoured in Mosaic Scripture and elsewhere as a land flowing in milk and honey. Humus is the flywheel whose momentum fosters and sustains the milk and honey flow through thick and thin—the better the storage of insoluble but available nutrients, then the more momentum the system has.

Soluble Problems

Soluble nutrients, such as the salts of nitrogen, phosphorous and potassium, must be extremely dilute or they interfere with the sensitive micro-life of the humus flywheel. Like urine, these salts are the wastes of microbes that fix nitrogen, solubilize phosphorous and release potassium. In the soil these salts shut down the microbes that otherwise might make them available when they are awash in their own waste. If these salts are applied at rates sufficient for a couple months’ supply, they kill off soil microbes and release nutrients—which results in a flush of crop growth; but it also leads to leaching of key minerals such as sulphur, boron, silicon, calcium, copper, zinc and manganese. Chlorides tend to sterilize the soil, while phosphates and sulphates, though useful to soil microbes, can still cause harm in excess. Nitrates are especially notable for causing a flush of available nutrients and a lush response that looks good, but it’s like the long haul trucker using ‘speed’, keeping double log books and driving 5 day runs in 48 hours. The result is problematic, and there is a price.

Humic vs Fulvic

Both humic and fulvic acids are so complex and varied they are only distinguished by the size of their molecules. Fulvic acids are of low enough molecular weight they can pass through bacterial cell walls as bacterial food. Humic acid molecules are larger and can only be consumed by microbes that can ingest them, like protozoa, or by silica oriented microbes like fungi and actinomycetes (aka actinobacteria) that can take the carbon skeleton apart. Since fungi and actinomycetes often live in close partnership with plant roots, especially our food crop roots, they provide access to the humic complexes in the soil, stripping out the silicon and carbon frameworks of the clay/humus colloids, thereby releasing all the other nutrients held on these structures. However, like bees drinking nectar and concentrating it into honey, these microbes also can mop up root exudates and loose nutrients in the soil solution and combine them for storage in clay/humus complexes so bacteria and leaching do not let them go to waste.

Many bacteria and protozoa are consumers that thrive in a nutrient rich broth and break things down. When soluble nutrient levels are high in the soil, the bacteria that fix nitrogen, solubilize phosphorous and release potassium can’t function because they are awash in their own waste. This is why tilling in a green manure crop requires a waiting period of 3 or 4 weeks, over which rampant bacterial breakdown subsides, before humus formation resumes and the excesses are stored in insoluble but available complexes. Only then can crops be planted and a stable plant/microbe partnership established.

Justus von Liebig, the great 19th century chemist who introduced chemical agriculture, acknowledged toward the end of his life his mistake in assuming productive soils required the nutrients to be soluble. By then, however, the chemical industries had seen great prospects for sales. Liebig, in his retirement, was ignored, and today the error of thinking solubility is good still continues.

Consider that most crop seeds contain a food supply so they can give off nourishment for beneficial microbes—thereby attracting and multiplying their microbial partners as their roots emerge. On the other hand, most weeds have tiny seeds which rely on soluble nutrients rather than microbial partnerships. They soak up loose nutrients by design, sprouting and growing vigorously when cover crops or raw manures are tilled in. They do not rely on the humus flywheel or feed its microbes. If crops are planted immediately after mixing in fresh vegetation or manures they do not grow well. It doesn’t take much experience to see the difference between application of raw manures and the application of humified compost—the former feeds weeds and the latter feeds crops.

Likewise if we apply large doses of highly soluble fertilisers—anhydrous ammonia, superphosphate and muriate of potash—our crops then have to compete with weeds that love soluble salts like potassium nitrates. It is only when we apply humified compost that we feed the crop/microbe interactions that feed our crops with a mix of amino acids and minerals akin to milk.

Soil Testing

Most soil tests use mild acids that do not reveal what is stored in the humus flywheel. The concept behind these tests is that several months’ worth of nutrients, especially the nitrogen, must be present in soluble form. But in reality, feeding a plant is more like feeding your kids. Plants only need a little bit of soluble food on a steady basis, rather than having it all on the table at once. To reveal what could be available from the humus reserve on a daily basis requires a testing method more like what is used for tissue analysis—a total acid digest.

Many organic growers take it on faith that if they build organic matter they will have good crops and their problems will go away. However, this is rarely the case. The clay/humus complexes in the soil are like a storehouse, and unless this storehouse has everything it needs, growth is limited to whatever is in short supply.

Since sulphur is the bio-catalyst that acts as the key in the ignition, when it is deficient both soil and plant life suffer. When boron—which leaches unless held in clay/humus complexes—is deficient, nutrient uptake lags because boron’s interaction with silicon is what draws fluids through the plant’s capillary system. And silicon, which lines the capillaries themselves, must also be sufficient, along with boron, to transport calcium and other nutrients. And, if calcium—which is essential for nitrogen chemistry and cell division—is deficient, then growth suffers. Moreover, if too much soluble potassium gets in the way of calcium and magnesium uptake, photosynthesis suffers. And even if everything else is working, without sufficient phosphorous and its trace element co-factors, chlorophyll burns up because its energy can’t be transferred into making sugar. So all these things need to be stored in the right proportions, which means we need to get the mix of major and minor nutrients right in the humus flywheel.

Understanding the Mix

In some of the world’s premier soils, such as the Ukraine, Western Missouri or Australia’s Liverpool Plains, nature’s virgin conditions provided black, crumbly clays with cation exchange capacities of nearly 80, and the first couple plantings of wheat and other cereals produced crops beyond anyone’s previous experience without any fertilisers. However, with insufficient understanding and poor management these soils went straight downhill and their enormous momentum was lost. Nevertheless, measurements of the carbon to nitrogen ratios in unexploited remnants still in their virgin state are between 9 and 10 to 1, carbon to nitrogen. Interestingly, it takes roughly 10 units of sugary carbon to fix one unit of amino acid nitrogen, so this does not seem mere coincidence. Even making industrial ammonia takes ten units of methane to make one unit of ammonia.

Comparing hundreds of total acid digest tests to field responses also revealed that a six-to-one nitrogen to sulphur ratio is desirable. When these two ratios are achieved and major and minor nutrient targets are approached so that microbial partnerships interact efficiently with the humus flywheel, then the only limit to nitrogen fixation is the energy provided by root exudation.

Since grasses make more sugars and can get them to their roots a lot faster than legumes, they can feed several times more nitrogen fixation than legumes. However, because legumes unlock minerals better with their acidic root exudates, they can feed nitrogen fixation in nodules on their roots and kick off nitrogen fixation in an otherwise mineral deficient soil. Because legumes unlock far more minerals than they use in nitrogen fixation, and because they leave these minerals behind for plants that follow, they have a reputation for getting nitrogen fixation going under tough conditions. Besides, it is easy to measure their nodules and estimate how much nitrogen was fixed, though it may be a mistake to credit their follow-on effects solely to the nitrogen fixed in their nodules. After legumes have made sufficient minerals available, grasses can easily supply the energy needed for further fixation.

Soil test information is useful in blending the right amounts of major and minor nutrients into composts or fossil humate fertilisers to ensure that both grasses and legumes have what they need. Composts and raw humates can be combined in humus based fertiliser programs, and as such they are food for life and are appropriate for growing quality crops.

Manure composts are richer in minerals and nitrogen than fossil humates, but either or both are an excellent way to add deficient nutrients in a humate complexed form. Even at only a quarter ton per acre composts and mined humates fortified with deficient nutrients can deliver significant adjustments, although imbalances and deficiencies usually require many small corrections. Fossil humates, which are more notable for nitrogen and sulphur deficiencies, generally need ammonium sulphate added along with whatever else is needed as rock phosphate, gypsum, borax, copper, zinc, manganese and sea minerals.

The total test ratios of carbon to nitrogen and sulphur can be used for nitrogen and sulphur targets while calcium, magnesium and potassium targets are derived from their percentage of base saturation. Other targets vary depending on the test used, and achieving these targets is likely to require many partial adjustments. Exact formulas for restoring optimum balance in soils is the job of a professional consultant, but in general never add more than 10 kg/ha borax, 15 kg/ha copper sulphate, 25 kg/ha zinc or manganese sulphate or 1 kg/ha sodium molybdate, cobalt sulphate of sodium selenate.[1] In sum, blending these mineral supplements in with humified compost and/or raw humates before spreading turns an expense into a capital investment.

Some References:

http://www.stadiumturf.com/acidity_and_salt_index.htm

http://www.soils.wisc.edu/extension/wcmc/2008/ppt/Laboski1.pdf

http://www.uctm.edu/journal/j2008-2/8_Kamburova_227.pdf

http://www.fertitech.com/

http://extension.oregonstate.edu/catalog/html/sr/sr1061-e/2tables.pdf

 

Biodynamic Preps for Drought

BD Preparations and Drought

By Hugh Lovel

How certain notions arise and become entrenched is a bit of a mystery, especially when they are wrong. Yet they do get started and entrenched. One of these is the belief that when things dry up and little moisture is available we cannot put out biodynamic preparations—as if these were delicate microbial cultures that must have moist conditions to establish and thrive. This is so far from true it seems impossible it ever got started. Yet it did.

When things dry up with rain months away is when we most need to apply our field sprays. When the organization of moisture in the atmosphere is at its lowest is when we need to enliven both atmosphere and soil to get them working together. In a drought nothing else does so much good for so little effort.

During summer, evaporation is high. Moisture rises up into the troposphere and as it cools it glides downward toward the polar vortex, flowing like a river in the sky to the pole. Variations in the jet stream determine where and when this river feeds moisture into storm fronts that drop—or fail to drop—summer rainfall. And yet, what organizes things in general, but particularly moisture, is life—and life activities is what biodynamics is about.

Organization is the basis of life, and life defies the rules for inanimate objects. Life draws organization out of chaos into more life. Biodynamic preparations are so rich in life they draw organization into wherever they are applied. The very reason we can impart life by stirring up tiny doses of preparations in water and sprinkling them over large areas is because life energy flows from lower to higher concentration. When we spray an area and enrich its vitality, more life energy, i.e. organization, flows to the area sprayed.  The more we spray an area, the more strongly that area draws in organization from the surrounding universe.

Back in 1988 a small group of biodynamic farmers held the first Southeast US Biodynamic Conference at my farm in Blairsville, Georgia. Hugh Courtney, who founded the Josephine Porter Institute of Applied Biodynamics (JPI), came from Virginia to lead workshops on making and applying biodynamic preparations. The attendees all stirred and applied every preparation to my farm despite the whole southeast being in summer drought. Out of the blue a summer thunderstorm drenched us thoroughly. Courtney went back home and did the same thing at JPI and the summer drought was history. The next summer the same thing happened at our second conference, also breaking a summer drought. By then Hugh Courtney had given preparation workshops at various widespread locations. In every case, rain—or at least technical precipitation—occurred when all the preparations were applied in a back-to-back sequence. Courtney explained to me, Harvey Lisle and others that he believed the preparations could draw to themselves whatever was needed to make life thrive, including moisture.

[[wysiwyg_imageupload::]]This was the beginning of what Courtney later called Sequential Spraying. At first we didn’t know that preparations could break droughts, but experience demonstrated applying all the preparations in sequence gave us the most gratifying results.

I have applied this technique with favorable outcomes on many occasions since. It seems to work best if launched when the moon is in a water or earth constellation at the approach to full moon, so use the Astro calendar and plan ahead to get the right amount of rain (rather than a flood).

 

The great secret of legumes is they carry oxygen to their root tips

Dear Greg,

 

Thanks. That was an interesting article. The scientific world, though fascinated with microscopy, is slowing catching up. It could get better at connecting the dots, but it keeps identifying lots of dots anyway. Many things are clear from the overview that seem like momentous discoveries down in the tsunami of complexity.

 

The idea that we might get plants other than legumes to form nitrogen fixing nodules is bogus, though.

 

The great secret of legumes is they carry oxygen to their root tips, releasing oxalic acid that solublizes the lime complex. Calcium may be primary, but all the other cations, at least to molybdenum are activated as well. In 1971 I studied soil microbiology and found out about azotrophs. Later when I was farming I used the Tulane and Georgia Tech libraries to find out more. At the time over 800 species of Azotobacter were identified in the Nile Delta and over 600 in the Mississippi Delta. Azotobacters are responsible for nitrogen fixation around plant roots without nodulation. They require the alkaline complex in the soil to already be readily available while they specialize in energy utilization. They especially like high-carb root exudation, so they are found in and around C4 plants like maize or sugar cane where photosynthesis is tops. They don’t need nodules if the lime complex is in flux. Nodules are their prison. Many are also phosphorous solubilizers, which ensures they can metabolize carbs excreted at growing root tips. It takes most azotrophs 10 sugars for every amino acid  they produce, and this mob wastes not. Why would they limit themselves to nodules when their freedom allows them to do much more. Legumes are so famous for nitrogen fixation simply because they lift the availability of the lime complex so much. They leave activated lime behind for the next crop, so you see a good follow-on nitrogen response. But ideally we would just plant suitable legumes along with crops like sugar, maize and sorghum. Without wasting time rotating crops we would keep the lime complex in flux at the same time as growing a corn or sugar crop. Having done this I found that after a while the soybeans in my maize stopped nodulating because the azotrophs at large in the soil did a better job.

So much for getting cane and corn to nodulate when it’s less efficient.

Under the microscope, nature is fascinating. Its complexity is boggling. Wherever there’s a function there’s a piece of the puzzle. Yet, the overview is more enlightening if you want to know what is going on.

 

Best wishes,

Hugh Lovel

Biodynamics: A Definition

The following definition of biodynamic agriculture was written by  Hugh Lovel, author of A Biodynamic Farm, in December 2012

BIODYNAMIC AGRICULTURE: Bio (life) dynamic (processes); Biodynamic
agriculture involves working with life processes. This does not mean
physical substance or chemistry are ignored. The biodynamic approach to
agriculture emphasizes life processes which have potent organisational (syntropic) effects to engage minerals and chemical reactions. The use of what are called ‘biodynamic preparations’ establishes, increases and enhances life processes. The question is, what is a LIFE process and whatare the life processes we are talking about?

Nineteenth and twentieth century physics focused on life-LESS processes.
With these energy flowed from higher concentration to lower concentration,
as without life all energy flows from order toward chaos in a process called
entropy. However, it became recognised in the mid twentieth century that
order also arises out of chaos. It does this cyclically at boundaries or
surfaces, which means energy flows from lower to higher concentration over
time periods that begin and end in a process called syntropy. Life processes
are syntropic, and a variety of these can be distinguished in regard to
plants, so let’s look at what these are.

In the soil, the processes involved in life are mineral release, nitrogen
fixation, digestion and nutrient uptake. These are related to the lime
complex commonly referred to as the CEC or as cations. Because biodynamics
comes from an awareness of the influences of the context on life processes,
these processes are correlated with the planets between the sun and the
earth, namely mercury, venus and the moon.

However, plants live both in the soil AND the atmosphere, and in the
atmosphere the processes are quite different and complimentary to the soil
processes. What goes on in the atmosphere is photosynthesis, blossoming,
fruiting and ripening. These processes are related to silica and to the
planets beyond the sun and the earth, namely mars, Jupiter and Saturn.

In large part, biodynamics involves getting a dynamic interplay going between what goes on above ground and what goes on below.

Plants draw in energy and carbon-the basis of life-via photosynthesis. By
doing so, they build up sugars and carbohydrates in their sap during the day
and a portion of this drains down to plants’ root tips and are exuded into
the soil around the tender young root growth of the plant. This feeds a
honey-like syrup to the soil foodweb which uses the energy to release
minerals such as silica, lime and phosphorous along with various trace
mineral co-factors that provide for nitrogen fixation.

Nitrogen fixation is VERY energy intensive as it takes roughly 10 units of
sugar to fix one unit of amino acid. Moreover, nitrogen fixing microbes
don’t just gift the nitrogen they fix to plants. However, protozoa and other
soil animal life eat mineral releasing and nitrogen fixing microbes, thus
excreting a steady stream of freshly digested milk-like nourishment rich in
amino acids and minerals chelates, which the plant takes up from the soil.
This milk-like nourishment is the basis for chlorophyll assembly in the leaf
and for the duplication of the DNA and the protein chemistry basic to plant
growth.

From the biodynamic point of view it is enormously important that the
soluble salt levels in the soil are as low as possible while the insoluble
but available nutrients stored in humus are abundant. Partly this is because
when the plant takes up amino acids instead of nitrogen salts the efficiency
of the plant chemistry is dramatically increased and photosynthetic
efficiency is multiplied. Also, soluble salts in the soil are toxic to the
nitrogen fixing and mineral releasing micro-life in the soil as soluble
salts amount to their waste, in which case they shut down and fail to
function as might be expected of any organism which had to live in its own
waste.

The bottom line is the more dynamic the interplay between what goes on above ground and what goes on below, the more robustly plants grow, the more efficiently they utilize the resources at their disposal, the more fully they achieve their genetic potential and the more strongly they express syntropic (life) processes.

Basically the aim of biodynamic farming is to achieve self-sufficiency where
the farm no longer requires outside inputs to be fertile and productive.
This means that any inputs a farm requires along the way of becoming
self-sufficient should be considered as remedies for a farm that has fallen
ill. This method has proven itself over the past 85 plus years as many
‘biodynamic’ farms have come close enough to this ideal as to be virtually
self-sufficient while producing high yielding crops of the highest quality
and exporting somewhere in the range of 8 per cent or less of their total
biomass production annually

Dynamic Processes

Dynamic Processes

by Hugh Lovel

 

In the uptake of nutrients from the soil foodweb, sulphur is the catalyst for nutrient release. Ever at work at the surfaces of things, sulphur, as sulphate, infiltrates the interstices between the soil’s colloidal particles and exposes their surfaces. In short, sulphur is the ‘open sesame’ to the soil’s mineral storehouse.

Silicon follows, and forms a partnership with the sulphur containing amino acids, methionine, cysteine and cystine in the structure of cell walls and connective tissues. In fibrous tissues, particularly in plant stems, this includes the linings of capillary vessels, as these do double duty as connective tissues, as in the stems of fruits.   

Boron, as borate, embeds itself in these silica linings and establishes an unresolved electron bond in the surrounding silica network that draws water and nutrients into the plant. As a result calcium, magnesium, potassium and amino acids are taken up from the soil and delivered to cell division and chlorophyll rich sites in growing tips and leaves. As chlorophyll captures light waves, phosphorous transfers this energy into sugar production—after which a mix of sugars and carbohydrates follow potassium through the silica pathways to store or provide energy wherever required in the plant.

This also means the role of silica, allied with boron, has enormous importance for photosynthesis.. The rapid transportation system of C4 grasses makes them the most photo-efficient plants—as they can really move things. Through their silica transport system they transfer the energy from chlorophyll to sugar faster than other plants. And abundant photosynthesis depends on how fast the reactions occur. The previous energy catching event must move out of the way for the next one to occur.

It might seem this would happen at the speed of light. In the leaf, however, the magnesium/chlorophyll complex that catches light is stationary. It has to send the energy it captures via phosphorous to where sugar is made, and the speed it transports this energy boosted phosphorous chemistry determines the rate of photosynthesis. C4 grasses are also most efficient at moving carbon dioxide and water into the process while speedily getting sugar out of the way so there are no bottlenecks. This is why with grasses like sugar cane, maize or sorghum, brix readings may need to be taken from the bases of leaves or stems rather than from leaf panels, as these plants rapidly move sugars away from where they are made. 

In looking at this picture, we want to be aware that the sulphur containing amino acids associated with silicon work very differently from nitrates, which cannot be excluded from plant water uptake. High levels of nitrates upset this process. While there will always be some nitrate uptake from the oxidation of amino acids within the soil, excess nitrate is closely associated with low brix. Brix is a measure of dissolved solids; and carbohydrates normally account for roughly nine tenths of the dissolved solids in plant sap.

If the plant can’t exclude nitrates, it must convert them to amino acids or they are useless—even toxic. If anything, nitrate’s affinity for water dilutes plant sap, protoplasm and chlorophyll, impairing photosynthesis and compromising plant vitality.

The conversion of nitrate to amino acid takes time and nearly the same energy as it took to fix nitrogen biologically. This means if plants use up their sugars plant converting nitrate to amino acids, this limits what is left over for root exudation and microbial nitrogen fixation around plant roots.

If nitrate uptake is too abundant or the plant’s conversion is too slow, its protoplasm stays watered down and nitrate reduction lags. Excess nitrate may even scald the plant’s silica transport system resulting in a low brix plant that is difficult to boost.

 

Winter Builds Complexity Into Soils.

 

As winter begins, photosynthesis slows down and nitrogen fixation becomes more problematical, while what grew in summer digests back into the soil. This process builds complexity. We can contribute or impede this, and sometimes we do—perhaps unwittingly, or perhaps deliberately. We have to learn what’s best. What emerges is it is particularly important that decomposing proteins are incorporated into humic acids and built into soil organic matter for future reference—along with sulphates, phosphates, borates and various major and minor nutrients.

Come spring, this complexity will start to break down and release a complex nutrient stream to feed plant growth. If one uses nitrate rich fertilisers—including organic ones—the importance of low nitrates and high amino acids in the root zone will show up in reduced vigour and crop quality.

Brix testing in the middle of crop cycles and trying to rescue processes that were less than optimum during winter, is no substitute for preparing over the previous winter to achieve high brix throughout the crop cycle. For many growers taking the appropriate steps in winter might see a welcome change from crops losing their oomph after the summer solstice when the days start getting shorter and sap doesn’t flow quite as strongly as it should.

 This returns to the question of the importance of strong sap flow.

Plants readily take up amino acid nitrogen, unless nitrates get in the way. Plants are healthiest getting most of their nitrogen as amino acids from the interface between their roots and the soil food web, rather than taking up nitrates in their water. But either way they must get nitrogen. The limiting factor in amino acid uptake usually is root exudation, which supplies energy to nitrogen fixing microbes. These microbes require abundant energy to manufacture amino acids. And lest we forget, soil animal life, particularly protozoa, must digest the nitrogen fixing microbes and release amino acids if this process is to support robust growth. 

If boron is sufficient and the uptake of water and nutrients from the soil is strong, photosynthesis will be productive, and in turn root exudates will be abundant. Otherwise nitrogen fixation may slow down and stall. One of the worries is that nitrate uptake reacts with boron. Thus it can flush boron out of the capillary linings and reduce sap pressure, nutrient uptake and root exudation.

 

Efficiency

 

Advocates of chemical nitrogen say fertilising with artificial nitrogen is efficient because plants don’t have to supply the energy. They reason that if artificial fixation uses ten units of methane to make one unit of ammonia, and still more to convert this into other forms, this is carbon energy the plant does not have to supply. However, when artificial nitrogen is applied as urea, half volatilizes as N2O gas while the remainder oxidizes to nitrate. Moreover, plants use up nearly as much energy converting nitrate to amino acid as was required to fix nitrogen as amino acid in the first place, so where is the savings?

The clincher is that nitrate suppresses nitrogen fixation—nitrogen fixing microbes drown in their own waste, as nitrate is the final waste product of their activity. This means that artificial nitrogen fertilisation—even if from organic sources—shuts down biological fixation. Then plants must depend on applied nitrates rather than on feeding nitrogen fixation and receiving amino acid uptake.

Ironically, the methane required for artificial nitrogen fixation is a non-renewable resource. We don’t want to become dependent on its use to artificially produce nitrogen because whenever it becomes scarce we’ll be in a fix.

In a low nitrate soil, microbes living around plant roots depend on strong sap flow, rich in amino acids and low in nitrates, into the plant by day. In return the plant gives off energy rich root exudates by night. With plenty of energy to fix nitrogen, the nitrogen fixing microbes and the protozoa which digest them in the soil foodweb will provide ample amino acids in each new day’s sap uptake. Strong sap uptake assures rich photosynthesis which assures more energy given off as root exudates. Then there is increased nitrogen fixation and protozoal digestion the following evening. This feeds richer amino acid uptake, stronger photosynthesis, more root exudation and so forth.

The less plants take up nitrate and the more they take up amino acids, the more efficiently they photosynthesise and share their life energy with their microbial symbiotes in the soil; then the more complex and vigorous they tend to be. In the final analysis, it not only matters how we build life processes into our soil, but also whether we impart these in an appropriate, balanced way. There are up and down processes. What goes on above adds energy and complexity to the growth and foliar processes which supply root exudates. Then if what goes on in the soil goes up, then what goes on in the leaf goes back down as root exudates.

Nitrogen comes into these processes in the soil, while carbon enters via the leaf. So we must see to the activities of sulphur, boron and silicon that open up the soil and provide transport for calcium, amino acids, magnesium, phosphorus, etc. so they arrive in the leaf and the processes of turning water and carbon dioxide into sugar take place.

The dynamic is that a certain amount of sugar is required to provide the energy for initiating microbial release of sulphur, boron and silicon for plants to deliver nutrients to the leaves. This is why crop seeds have large, carbohydrate rich cotyledons while weeds have tiny seeds with next to no carbohydrates. Conversely the amino acids and minerals delivered from the soils are required for the leaves to capture energy and make carbohydrates in the leaves. This delivers carbohydrates to the soil’s microbes as root exudates and feeds more and more nitrogen fixation. The dynamic interplay between what goes on below ground and what goes on above depends on boosting each  activity at the right times, morning and evening—as if we were pumping our farms or garden up on a swing set. Timing and balance are key, and that means there’s no substitute for doing the right thing at the right time. We need rhythm and feeling as well as a modicum of substance.

It becomes clearer and clearer that we cannot meet all our challenges in agriculture without understanding both processes and substances. Substances play their parts, but we need an understanding of life process as well. These differ with the seasons, the phases of the moon and various other factors. Without doing the right things at the right times we will never turn our farms around to improving instead of running down. Ultimately what this means is operating our farms or gardens as unique organisms within their own boundaries and contexts. These can be the property boundaries and natural cycles, within which energy and complexity builds up out of the surroundings; but, without boundaries and closure of cycles,  life forces leak away.