Life Processes Through the elements Warmth, Light

  1. The sulphur warmth process–Ever at work at the surfaces of things, sulphur, as sulphate, infiltrates the interstices between the soil’s colloidal particles and exposes their surfaces. In short, sulphur is the ‘open sesame’ to the soil’s mineral storehouse.


  1. The silica light process–Always at work in the boundaries, silicon, along with light, is of key importance for containment and transport. In fibrous tissues, particularly in plant stems, this silica process forms the linings of capillary vessels, and these transport vessels do double duty as connective tissues—for example, in the stems of fruits.


  1. 3. The carbon photosynthesis process–In the leaf the magnesium/chlorophyll complex that catches light is stationary, though it vibrates like a tuning fork. Via phosphorous, it sends the energy it captures to where water and carbon dioxide combine to make sugar and release oxygen. The rate of photosynthesis is determined by the transport speed of the energy boosted phosphorous, as well as the transport of sugars once they are made. The reason why brix readings for C4 grasses like sugar cane, maize or sorghum are taken from the bases of leaves or stems rather than from leaf panels is these plants rapidly move sugars away from where they are made.


  1. The boron root exudation process–When boron is sufficient and the uptake of water and nutrients from the soil is strong, photosynthesis will be productive, and root exudation will feed nitrogen fixation and nitrate reduction.


  1. The molybdenum amino acid ( nitrogen fixation and nitrate reduction) process—In this process microbes uses root exudates along with molybdenum to fix nitrogen. They require roughly 10 units of carbohydrates to fix one unit of amino acid.


  1. The lime digestion process–Soil animal life, starting with protozoa, provide the daily digestion and release of fresh amino acids that makes this process efficient. This is a lime process that feeds amino acids and minerals back to the plant so it can capture energy, etc.


  1. Return to the silica light process– The overall process is one of taking up amino acids and minerals from the soil so the carbon process in the leaves can capture energy and make carbohydrates for growth. This feeds root exudates to soil microbes which require molybdenum to fix nitrogen and thus to feed protozoal digestion. The nitrogen soil process requires roughly 10 units of carbohydrates to fix one unit of amino acid. Working properly, this feeds amino acids and minerals back to the plant so it can capture energy, etc. The dynamic interplay between what goes on below ground and what goes on above depends on boosting each activity at the right times, morning and evening—as if we were pumping our farms or gardens up on a swing set.

Let’s talk about carbon

If we’re going to attract the life forces that agriculture feeds to human society as a whole to keep it alive, then we have to collect carbon.

Let’s talk about carbon. Carbon is associated with the earth element, and of course we’ve got water, air and fire as well. Sometimes carbon is called the Philosopher’s Stone. The hardest substance on earth is diamond, made from carbon. It’s also the framework for all living organisms, and it’s the magnet for hydrogen. So anytime we’re talking about conserving water then we need to talk about carbon because water will evaporate into the atmosphere – it will drain away and leave the landscape – unless there’s carbon there. Carbon attracts rainfall out of the sky. Carbon holds onto the water in the land, and carbon is what the chemistry of water works upon. So when we’re looking at what accumulates life-energy, it’s carbon.

When Wilhelm Reich did his work with orgone accumulators, he found carbon was the basis of orgone accumulation. Metal was the way of conducting it, but to attract it you had to have carbon. Carbon is the earth element, it’s the anchor for whatever we’re going to do in terms of building life into the landscape. And of course agriculture is what we’re doing to give life to our society. As far as the sociologists are concerned they know very well that we live in an agrarian society today, the days of the hunter-gatherers and whatnot are just not what’s mainstream anymore. Agriculture has given us the division of labor and the abundance, the savings of being able to specialize. So with the advent of agriculture, we had the rise of civilizations. Now here we are.

If we’re going to attract the life forces that agriculture feeds to human society as a whole to keep it alive, then we have to collect carbon. If we’re not collecting carbon with our agriculture, if we’re somehow or another dispersing the carbon, burning it up, exhausting it, robbing our soils of it or whatever then our agriculture is going to crash. Now carbon is the gold of our environment. What about the idea of the Philosopher’s Stone turning something to gold, turning base metal into gold? Carbon is what does that in terms of what’s the most valuable to us in our society – and that’s life. Carbon is what conserves life, draws in life, it accumulates life. When we’re talking about making agriculture free, we’re talking about building up carbon in our soils, accumulating carbon and being able to have a surplus of carbon so that we can harvest it from our farms and give it to people in our markets, in our restaurants and our dinner tables so that everyone has sufficient life in order to be healthy and happy. So it’s carbon that’s the wealth of our society.

The question is how do we accumulate carbon? Photosynthesis accumulates carbon from the carbon dioxide which is the free carbon in the atmosphere. It draws in carbon dioxide and turns that into sugar which is the basis, the framework of all of our carbohydrates. It of course also combines with nitrogen to make proteins. Oxygen organizes carbon in carbon dioxide and puts it out there everywhere for free. Photosynthesis unites water and carbon dioxide to make sugar, and it releases oxygen then to go off and organize other things.

Anytime we want to accumulate carbon what we have to do is to encourage photosynthesis. Whether it’s algae on the surface in the desert or algae on the surface of the ocean or it might be plankton in the ocean, they’re big carbon accumulators. But whatever it is, we accumulate carbon through photosynthesis. Photosynthesis – the capture of fire, you might say – and the building of a carbon framework, allows us to accumulate carbon in the landscape. Right now today on the planet earth we’ve got more carbon dioxide in the atmosphere than in any other time that we know of. We’re in a period of great wealth if we want to accumulate carbon because it’s everywhere, it’s free.

Hugh answers Ibo Zimmermann, Deputy Director Agriculture and Natural Resources Sciences Namibia University of Science and Technology

Dear Ibo,

How biodynamic does a farm have to be to be biodynamic? Here is what Rudolf Steiner had to say about farms:

A farm is true to its essential nature, in the best sense of the word, if it is conceived as a kind of individual entity in itself — a self-contained individuality. Every farm should approximate to this condition. This ideal cannot be absolutely attained, but it should be observed as far as possible. Whatever you need for agricultural production, you should try to posses it within the farm itself (including in the “farm,” needless to say, the due amount of cattle). Properly speaking, any manures or the like which you bring into the farm from outside should be regarded rather as a remedy for a sick farm. That is the ideal. A thoroughly healthy farm should be able to produce within itself all that it needs. (Agriculture, Lecture II)


What I’ve found is the most important part of a farm is its boundaries. That’s like our skin is our most important organ, without which our inner organization would neither arise nor maintain itself. You could plant casuarina trees along the boundaries and horsetail like hair in the ditches and dykes, and that would really help the farm to be self-sufficient, but how are you going to delineate the boundaries of experiment plots so they are comparable to rice paddies on biodynamic farms? My smallest rice terrace was somewhere around 7 to 8 square metres and my largest would have been more like 50 square metres. The dykes were in grass, clover, dandelions, plantain, and other ‘weeds’ that got mowed occasionally (maybe once a month) with a lawnmower. You could have used a whipper snipper. All my local frogs, from the huge bull frogs to tiny tree frogs reproduced in the rice terraces, which were teeming with life. My old farm cat developed a taste for the young bull frogs and couldn’t wait to catch them at the boundaries. She stalked them through the rice. She would emerge slathered down in mud and algae with a frog in her jaws. Her tongue bath and toilet afterward must have been a lot of work, but somehow she reckoned it was worth it–there was a really strong life going on in those terraces and the frogs must have tasted really delicious. Being from South Louisiana I never ate frogs legs raw. I always dipped my frog legs in an egg batter and dredged them in corn flour and seasoning to fry them. I never tried the frog legs from my rice terraces because I didn’t have enough rice swamp to have a night-time frog gigging party with headlamps and tridents like we had in Louisiana. But with a few acres of rice instead of a mere 120 square metres we could have had parties–a great place to grow frogs and crayfish.


I paint this picture above to illustrate how difficult it might be to plant one or two experiment blocks of biodynamic rice in a larger context of test plots including control plots where nothing is added or taken away. If you stir up a complex made from all the biodynamic preparations and apply this to the biodynamic plot or plots how can you keep the effect from this tone-like resonance from affecting nearby plots? And where will you get your biodynamic ecology of algae, azola, tadpoles, birds and all sorts of other aquatic and flying species and still keep them away from the other plots including the controls? I’m not saying give up and forget it. And I’m not saying you can just ignore the spill-over effects from one block to the next. You’re going to have some spill over and you’re going to have some challenges in establishing a biodynamic ecology from the soil food web up. You’re going to have to consider that biodynamic farms generally show almost triple the conventional concentrations of fungi, bacteria and protozoa, to say nothing of ants, earthworms and other higher animals–and the same with ‘weeds’ or companion plants like legumes in the rice. No. You’re going to have to do the experiments and see how much of an ecology can be imparted to the biodynamic plots and how much this can be kept separate form the other experiment plots. And the final conclusions of the experiment will need to acknowledge the limitations and challenges of the experimental methods and show how these were dealt with. Go for it, but don’t expect it to be easy.


To help get a fuller picture of what biodynamic farming is about I’ve attached a copy of Steiner’s agriculture lectures, Georg Adams translation. It is the earlier translation (1938) and in some respects is more poetic than the Creeger/Gardener translation which dates to the 1990s. You can also go to Rudolf Steiner audio and download an audio version of the Agriculture Course that you can listen to while driving or whatever.

The researcher doing the rice might delve into these resources as well. Biodynamics may have resisted conventional research by virtue of its complexity. It is a comprehensive system of agriculture and it works best as a comprehensive system. Anything less will fail to show biodynamics in the light it deserves. A lot of biodynamic concepts, such as the importance of silica, can be very useful in conventional agriculture as well. For example, the USDA did research that compared the use of potassium silicate (an industrial product) with various fungicides. Even though potassium silicate is not a fungicide (it doesn’t kill fungi on contact) it prevented fungal diseases in wheat, carrots, tomatoes, potatoes better than any of the fungicides tested. Somehow the USDA refrained from blanket publicity of this fact, I suppose out of consideration for the welfare of makers of commercial fungicides.


Best wishes,

Hugh Lovel

Youtube of Hugh teaching Biodynamic Association of Namibia

Hugh Lovel New Book  

Quantum Agriculture:   Biodynamics and Beyond


Hemp Cultivation: Secrets of the Soil

Ideally crops would be grown in mixed covers with as little soil disturbance as possible while feeding, balancing and enriching the soil’s ecology with mulches, humified compost, raw humates and soil drenches to harvest warmth, light, water, carbon dioxide and nitrogen from the atmosphere.

Corn Breeding: Another Perspective

I found Walter Goldstein’s article on corn breeding (in BIODYNAMICS 232) at Michael Fields Institute to be a model of vision, dedication and precision. This is a field of endeavor that for much too long has gone in the direction of removing seed saving from farmers’ hands, making them dependent on things entirely beyond their control. I have the utmost respect for Walter, and this is yet another instance that justifies my estimation.
I say this because I don’t want folks to think I’m critical in presenting a different perspective on corn breeding. Walter is breeding corns for large farmers, while what I’m breeding is for small CSA market gardeners. Not only are our aims quite different, but so are the resources at our disposal. Of course, as a market gardener with cows, chickens and sometimes pigs, I am working with corn not only for market but for feed. My sweet corn, popcorn and cornmeal corns primarily are for humans, but the seconds as well as some of the stalks go to the animals, providing a significant portion of their diet. Moreover, the stalks are a major food source for earthworms, and I grow corn as a soil improvement crop. More on that later.
Because my location is in the mountains of North Georgia, I enjoy a longer, warmer season than at Michael Fields. But I also have the shortest season in Georgia, spanning a mere five frost-free months. The coldest temperature I’ve recorded here is -22 degrees F, which means I have a rather intermediate situation. Given these conditions, I can develop varieties with a wide range of characteristics that can be used by CSA and market gardeners throughout the continent as a genetic base from which to select strains uniquely suited to their individual farms. In short, I breed for diversity. Hugh Lovel corn breeding program I ought to mention a few things about my growing practices. Here in Georgia we have warm temperatures and plenty of moisture so our soils digest rapidly and require a lot of replenishment. In my market garden I use a forty inch wide spading machine to produce beds while leaving a thirty-five inch wide path between them that the tractor rides on. These walking/driving strips are kept in permanent grass and clover cover. By mowing them in the growing season I provide a lot of earthworm fodder while the corn or other vegetables are young. The clippings get digested in place as long as earthworm populations are high. So the earthworms have a balanced diet I interplant soybeans down the middles between the corn rows. Since I plant the large seeded Vinton 81S which make a great edible green soybean that sells for high prices, where the beans flourish I can pick a money crop. The beans never compete with the corn and if anything enhance its growth while suppressing weeds. And since I’m keeping my earthworm populations high in summer with the lawnmower clippings, when I mow and spade in my corn stalks there are plenty of earthworms to ensure their digestion. This allows me to plant my fall/winter spinach/garlic crop behind my early sweet corns without any compost, just tillage.
The application of biodynamic preparations makes a huge difference in how my corn grows. I’m planting with a Cole “no-till” planters using the smallest corn plates I’ve got on everything except the popcorn. However, the corns I’m working with, even the flint cornmeals, are small seeded so I get an average distribution in the row of about six or seven corn plants in two feet of row. For conventional methods that may be too much, though it is what my equipment does. I compensate somewhat by wider row spacing and my plant population per acre is probably in the same range as Walter’s.
I’ve been getting very good results without using any fertilizers, because with the preparation 500 I’ve got a good soil food web, and with the 501 I take a quantum leap in photosynthesis. This is standard biodynamic practice, but I add to it with the use of horn clay. Horn clay stimulates transport within the stem – and corn has a killer stalk. The abundant sugars created in the leaf go to the roots and are exuded into the soil feeding the mycorhyzae, azotobacters, and so forth.
Brace roots exude sugars
These in turn provide the plants with the best possible nutrition. This is especially true for nitrogen. If I put my nitrogen on as compost, some of this oxidizes into nitrates or reduces into ammonia before the corn soaks it up, rendering the corn somewhat salty and watery, though not as much so as with chemical fertilizer. Salts and water in the corn protoplasm makes field corn hard to dry down and encourages insect damage. However, if the corn as it grows feeds sugars to the microorganisms that fix nitrogen, the corn gets its nitrogen as amino acids which it turns directly into protein. Just as the corn matures it is getting abundant amino acids. Then I get corn of the highest quality while getting high yields. Reincorporating my crop residues allows earthworms to do the composting without me hauling anything to or from my barnyard.
As a market gardener with limited land and relatively unpredictable help, my resources, especially labor, are thin, as they are with many market gardeners. If things are to get done they must involve inspiration, or – for lack of a better word – fun. For me it is not great fun to conduct the sorts of patient, methodical assessment of individual plants as at Michael Fields, even though I greatly admire Walter’s work. Nevertheless, nature points out the successful individuals in any given corn population, and I watch for these. When evaluating a promising line of breeding, flavor is my best assessment. As chemical analysis goes, flavor is a very integrated and sophisticated method. My orange flint, which has fourteen years of breeding history, makes the best tasting cornmeal of any I know. A lab analysis would be interesting, but its rich, nutty flavor alone lets you know it is high protein.
Corn breeding is particularly interesting. On any given ear the genetic contribution from the mother plant is the same for every kernel. It is this genetic simplicity that allowed Barbara McClintock to win a Nobel Prize in 1987 for proving corn mutated every generation. For open-pollinated corn this means saving a minimum of two hundred ears to ensure a stable, reliable breed. Currently I only fulfill this requirement with my orange flint cornmeal, which I’ve bred for fourteen years. All my other corns are breeding experiments that I don’t guarantee as stable. However, I’m growing two kinds of sweet corn, one early and one late; three flint cornmeals, one multicolored hominy dent, and three popcorns. I’m particularly interested in developing a popcorn that is as robust as an ordinary tall flint while still having the small ultra-dense kernels that pop well.
I think, however, that a lot more attention should be paid to Barbara McClintock’s discovery that corn mutates with every generation. To be sure, it doesn’t turn into tomatoes. It stays pretty much the same kind of corn over the generations, but it does mutate. Every time. This is another case where what Dr. Steiner said in 1924 has proven true:
We usually think of the seed, from which the embryo develops, as having an extremely complicated molecular structure, and we set great store in being able to understand it in all its complexity. We imagine molecules as having certain definite structures, simpler in the simple ones and getting ever more complicated until we come to the incredibly complicated structure of a protein molecule. We stand there in wonder and astonishment in front of what we imagine to be the complex structure of the seed’s protein. We’re sure it has to be terribly complicated, because, after all, a new organism has to grow out of it. We assume that a whole new complicated organism is already inherent in the plant embryo in the seed, and that therefore this microscopic or submicroscopic substance must also be incredibly complicated in its structure. To a certain extent this is true at first. When earthly protein is being built up, the molecular structure is indeed raised to the highest degree of complexity. But a new organism could never, never develop out of this complicated structure. That is not how a new organism comes about. (1)
Steiner goes on to describe how the new plant arises out of the influences of the whole surrounding universe, and the parent plant only endows it with a tendency, “…through its affinity for a particular cosmic setting, to bring the seed into relationship with the forces from the proper directions, so that what emerges from a dandelion is a dandelion and not a barberry.” This is something Luther Burbank surely must have known and used to advantage many times in bringing new varieties into being.
What I’m trying to do is breed good starting material for market gardeners who save their own seed. Maybe I can save them ten or fifteen years by supplying a good genetically diverse sweet corn, popcorn or cornmeal corn that responds well to the biodynamic preparations (including horn clay) and has such diverse characteristics that market gardeners from Mexico to Canada can then develop their own breeds uniquely adapted to their locales.
Keeping in mind that each new generation arises out of the influences of the whole surrounding universe, and that the forces of the periphery influence the genetics more so than the other way around, I hope market gardeners will look to saving their own seed – not just to save money but to develop breeds adapted to their local conditions. When one thinks of all the heirloom varieties that are being lost right and left one has to wonder where they came from in the first place. It makes sense that they came from folks saving their own seeds on a small scale and conserving beneficial mutations when they arose.

(1) Rudolf Steiner, Agriculture: Spiritual Foundations for the Renewal of Agriculture, trans. Gardner and Creeger (Kimberton: Biodynamic Farming and Gardening Association, 1993), 34-35.

Originally published in BIODYNAMICS 233, January/February, 2001


Weather Moderation: Drawing Rain Using Biodynamic Preparations

Biodynamic Preparations and Drought

Hugh Lovel

How certain notions arise and become entrenched is a bit of a mystery, especially when they are wrong. Yet they do get started and entrenched. One of these is the belief that when things dry up and little moisture is available we cannot put out biodynamic preparations—as if these were delicate microbial cultures that must have moist conditions to establish and thrive. This is so far from true it seems impossible that it ever got started. Yet it did.

Essential Oils in Plants using Biodynamic Preparations

Dear Hugh and Shabari,

Trust you enjoyed your trip to SA and will return with more of your wisdom. I heard talk that we could receive the recording but this did not happen??

Please could you help me understand the biology or process of oil production in plants. Rosemary or Rose petals for instance…. I am interested in Essential oil production and need to understand the inner processes so as to know which one and when to apply our field sprays to maximise this production ; I would guess 501 one or two days before and harvesting… I assume that oil is highest before flowering, the flower sign before full moon or just after… and time of the day according to the ‘rulership’ planet of the plant taken from Culpepper. Would a single spray of one of the compost preparations be of benefit and if so ‘when’ and why?.

In truth, I do not actually know how to work out this influence of the ruling planet. Does it mean when the planet is in opposition to the Moon? or a trine involving that planet… ? Which is more powerful?

I understand that Nettle as a companion plant increases the oil content. Why? what is it about Nettle that does this? I have also been told that Yarrow does the same. ?

Any information on this subject would be greatly appreciated, or a reference/book etc.

Kind regards,

Avice Hindmarch.

Dear Avice,

Thanks for asking the right questions. Though I don’t know what your levels of essential oil production already are, I feel sure you can raise them if you put a little more effort and a lot more use of biodynamic preparations into it. Let’s look at correspondences between the various preparations and the processes involved.

500 — lime, digestive (transformative), earthly, gravitational processes
501 — silica, formative, cosmic, levitational processes
Horn Clay — intensifies both cosmic and earthly processes by working with that truly cosmic element, boron, to improve sap uptake and root exudation (Sap must go up in order to sink back down, and root exudation is what feeds nitrogen fixation)

502 — yarrow flowers in stag bladder, strongly intensifies boundaries (organization arises at boundaries), sulphate of potash, Venus, concentration and excretion of spent nitrogen as uric acid.
503 — chamomile flowers in cow intestine, intensifies protozoal digestion around plant roots that supplies amino acids and mineral complexes to plants, lime complex and amino acids, Mercury, provides the nutrient stream for cell division.
504 — Stinging nettle leaf and stem, charges or intensifies plant sap with organization (nettles are 36% protein and rich in every mineral, especially magnesium and iron) Sun, intensifies circulation and enriches the blood process. Jack of all trades, helps everything, central to organization.
505 — Oak bark in cow skull, densifies structural processes and reduces the tendency of amino acids to lose their organization and nitrify or become dead nitrogen. Works with both silica and calcium as bone cells are silica framework filled by calcium. Moon, works on both the skin and bones and provides dense, structural strength. Use in conjunction with horsetail for wet conditions where moon forces are strong but disorganized.
506 — Dandelioin flowers in cow mesentery, enhances fruit development working with the embrionic fruit’s potassium gateways in its silica cell walls to facilitate the uptake of amino acids and minerals responsible for cell division in early fruit development. Jupiter. Responsible for size and fullness of fruit.
507 — Valerian flower juice, works with phosphorous metabolism and oxidative processes occurring in flowering, as with lungs and haemoglobin in blood oxidizing carbon in muscles. Mars. Enhances flowering process in plants.
508 — Horsetail decoction, works to strengthen silica forces in cell walls, surfaces and transport vessels. Saturn. Enhances photosynthesis, integrity and immunity.

Perhaps this will help guide you in the use of preparations in various weather and soil conditions and at various stages in plant development. For example, stinging nettle can more than double essential oil production by its Sun-like rich, jack of all trades, capacity to organize things. But if you are having a wet, overcast spell of weather you will also need oak bark (Moon) and horsetail (Saturn). Since essential oils are like an excretion from plant cells, yarrow (Venus) will specifically target this process at the cell walls (boundaries) where it occurs.

Best wishes,
Hugh Lovel

Azolla as a nitrogen fixer and source

It isn’t too clear what this ​Azotic Technologies ​mob is on about, but it looks like a microbial product not a DNA insertion or GMO tech. One of the annoying features of most of these sorts of things is the marketers like to keep the details of what they are selling very clost to their chest. Let me tell you a story.

Twelve years ago I used to spend a couple afternoons a week with a microbiologist by the name of Kyle Merritt who worked for Nutri-Tech. We would go to the pub and have a coffee together and brainstorm about nitrogen fixing microbes. As we were both aware, the varieties and numbers of species of nitrogen fixers is quite enormous and by no means limited to the Rhizobia that form nodules on legume roots.​ There are also the Azotobacters, of which large numbers of different species have been cataloged in river deltas, and Azospirilla which have been found in most Brazilian soils and elsewhere–again with large species diversity. There is the blue green algae, Anabaefa azota​, famous for fixing nitrogen in the fronds of the aquatic weed Azolla, and several species of Azolla as well as large numbers of nitrogen fixing blue green algae that live in the ocean as well as phosphate rich ‘fresh’ water. Then there is the gram negative anaerobe, Acetobacter diazotrophicus​, that fixes nitrogen in the stems of sugar cane and coffee and other plants.​ And also certain species of Clostridia are anaerobic nitrogen fixers. The list goes on and on and may involve even the Archaea, the most primative microbes on earth which eat rocks. Archaea, which are extremely tiny, are thought to be predecessors of the mitrochondria which handle energy within the cells of Eukaryotes, which are all modern organisms with chromosomes. Since somewhere around 10% of the earth’s microbial life has been studied so far, I wouldn’t be too surprised about much of anything. But the point of this story is Kyle left Nutri-Tech and working with a new company developed his own nitrogen fixing microbial product called Twin-N. Twin-N has been tested by the USDA and other research facilities and is capable of infecting a wide range of crops from wheat to bananas and including rice and sugar cane. One of Kyle’s problems with this very effective product was sometimes it didn’t work. First, the plants had to have adequate supplies of lime complex elements from calcium to molybdenum as well as adequate phosphorous and silica uptake. And N fixation takes a lot of energy so the crop’s photosynthesis had to be efficient as well, which meant this didn’t work in a high nitrate environment. And it seems that the nitrogen fixing microbes did not just sacrifice themselves and donate their precious amino acids to the crop plants. Protozoa living within the plants as endophytes, had to consume the nitrogen fixers, digest them and excrete free amino acids. And in some cases as with ginger and tumeric nematodes and other tiny somewhat parasitic animals were responsible for digesting the nitrogen fixers. In the case of Acetobacter the microbe itself may have brought about its dissolution and release of amino acids due to excessive acid production, but that may not have been the main way the amino acids were made available to crops. There was a lot we didn’t know. Yet, in many cases Twin-N was a very effective means of obtaining N for crops as long as nitrogen fertiliser applications were kept low (and usually coupled with soluble humates). You can google Twin-N, which might not be licensed in the UK, I don’t know. Azotic Tech says they are coating seeds with Gluconacetobacter diazotrophicus​, where ​Twin-N used more than one different type of N-fixers.

I just thought you ought to be aware there may be various approaches to nitrogen fixation and from my experience with using biodynamics to create the right environment for nitrogen fixation you may not have to buy anything special to get it to supply all the N your crops require. These microbes are found in environments all over the earth. Radionic application of biodynamic preparations, soil mineral balancing and good management of diverse vegetative covers may be all you need and you need these things anyway to get the N-fixing products to work. This doesn’t mean to avoid the products. If they can be any help, go for it. Just don’t get too many stars in your eyes.
Hugh Lovel 13/06/2017 Wiangaree, NSW, Australia

Ending Global Warming

“You can’t be free when you depend on someone else for your food.” –Wendell Berry

News Flash: Man-made warming may have begun earlier than we thought
Gayathri Vaidyanathan, E&E reporter
ClimateWire: Thursday, August 25, 2016

Before gasoline-powered cars crowded roads, before even the first coal-fired power plant was built in the United States, humans had begun warming Earth’s climate.
By 1831, the signals of man-made global warming could be seen in the Arctic and the tropical oceans. By 1850, all of the Northern Hemisphere was warming. The Southern Hemisphere followed a half-century later. On the continents, people were clearing land, building railroads and mining coal at the start of the Industrial Revolution. That is when global warming began, scientists announced in Nature yesterday.

Part I: Agriculture and Global Warming

Potentially agriculture could repair global warming by catching and sequestering warmth, light and carbon dioxide. It would do this without subsidies because working in co-operation with nature is cheaper and easier if farmers only learned how. Vegetation is the answer. However, the common cultural belief is we must bare more and more soil, plough, erode, and wage war on nature with chemicals to feed the world’s increasing billions.

The story we are told by those at the top of agricultural industries and commodity traders is the world will run out of food if we don’t ratchet up the war on nature—even though the farmers doing this are drowning in debt, crippled by world surpluses and forced to take prices below their production costs. Meanwhile, first world populations mow their lawns every week, pull weeds and herbicide traffic ways. Bare soil is perfectly acceptable. The warmth and light this contributes to global warming goes unnoticed even though anyone in summer with bare feet walking on bare sand, soil or pavement should recognize bare surfaces are a leading cause of warming. Bare soil keeps increasing and agriculture is chief among its causes. Any alien visitor from outer space would look on this with disbelief. In some places herbiciding roadsides is mandated by law, as though making war on nature is politically correct, desirable, justifiable and somehow beautiful.

Just about everywhere environments are spiralling towards chaos. Weather is driven by warmth. Free warmth and light—given off from bare surfaces—slowly drives our weather systems to greater and greater extremes. If there is any reason for shame, it is turning the soil over and leaving it exposed to die. But shame and justification fall short of remedy.

It’s more empowering to ask how farmers can make a difference. Many examples show things could be other than the present. Agriculture is a two-edged blade. One might even say agriculture is central to global warming—both the unwitting cause and the potential solution. We need clarity about how nature works, how to feed nature’s armies of plants and animals, and the benefits that result. We can improve how we handle atmospheric cycles, and the nitrogen, oxygen, carbon, hydrogen and sulphur the atmosphere contains. Though this may sound complicated, it is really quite simple. An historical look at how this occurred may help.

Part II: An Historical Overview

“Maybe some readers find that I have expressed my convictions with too great of a frankness, that I have not always been polite enough. But the times are so serious in which we are living, that if we want to make any impression at all, we must speak in strong terms.” –Lilly Kolisko, Agriculture of Tomorrow

With farming came tillage, erosion and a host of problems as soil life was lost and restoration of soils failed. Re-vegetation is essential to store up warmth, light, water, CO2 and proteins as soil life, resulting in balance, vitality, health and, hopefully, self-realization. The alternative may be extinction if all we do is accept environmental degradation.

Middle Ages to 18th Century Europe

Back in the old days ploughs were made of wood, usually shod at their tips with metal. These ploughs wore out rather swiftly, and the modest damage they wreaked on the soil food web up through the 18th century was fairly sustainable.
Shallow ploughing and harrowing produced a good seedbed for hand sown crops, which benefitted from the nutrient release that followed. As long as the soil food web’s microbial life restored itself tillage was little more than a scratch on the arm. There wasn’t much concern about fertility or weeds. When weeds occurred, folks took an interest in using them. This retained diversity, keeping soils healthy and vital. For the most part farmers built fertility by grazing, storing up warmth, light and carbon as humus. Bare soil was occasional and brief.

As industry awakened, steel ploughs started coming into use all over Europe and its colonies. By the end of the 18th century folks had learned to turn over the soil with their new, sharp mouldboards that left entire fields of bare earth in their wake. Farmers ploughed more and deeper. Teams of animals pulled these steel ploughs and harrows, and at first this seemed far better as long as the soil food web was ignored. Yet this began to liquidate the better part of soil life, draining momentum from the soil’s humus flywheel. The increased release of nutrients led to higher production in the short term, but in the long term this exploited the soil’s fertility—selling off key capital and treating it as income. These were the seeds of soil bankruptcy.

19th Century

As the 19th century proceeded, fertility declined, even where livestock residues were returned to fields. Better equipped estates with more horses ploughed deeper, and tended to have faster fertility losses, particularly on light soils. Even so, with deep, rich, black soils this seemed sustainable. With mechanical sowing and reaping the nineteenth century saw improvements in crop yields while more and more territory was laid bare. Agriculture subscribed to a treadmill of borrowing from its future.

Obviously, at least to some, when you found an old, well-managed pasture, you could expect good yields the first year you ploughed it and released that sweet, clean Actinomycete smell while wrecking the soil food web. It smelled and felt great, but the penny didn’t drop about the damage and loss. Instead standard practice was to grow a cover crop and plough it down prior to planting a following crop for harvest. Ploughing vegetation under was problematic, as burying cover crops caused purification that encouraged weeds, insects and diseases. Nevertheless this also produced a temporary lush effect that seemed restorative. Cover cropping made up for some of the losses while slowing the apparent decline, but not much changed. Ripping up the soil food web and leaving the soil bare ran the soil down.

In those days most ploughing involved ploughs that turned the soil over. There were debates about the relative worth of ploughing shallow or deep. Deep ploughing buried plant residues where there was little oxygen. In response some folks stood their sods up rather than ploughing them over. This was messier and didn’t produce as smooth a seedbed, but some felt it was healthier and better for soil life. In some places farmers formed the soil up in ridges and planted in the ridges. The extra oxygen boosted crops, but ploughing still impaired nitrogen fixing capacity and wrecked the soil food web.

20th Century

Chemical war on nature got in full swing with the birth of the ammonia industry in 1907, while mechanical tractor power enabled chisel ploughs to rip through the soil food web without turning. This left much of the vegetation and trash on the surface, limiting wind and water erosion while allowing the soil food web some chance for recovery—unless soil sterilants like anhydrous ammonia or potassium muriate were applied. But there also were rototillers which completely churned through the soil, destroying whatever structure there was—even where anhydrous and muriate were not used.

The last half of the 20th century really shut down the soil biology with bigger and bigger machinery and round after round of toxic chemistry. Soluble soil testing, which ignored soil reserves, became the fertiliser industry’s tool of choice to sell NPK salts. Yet, the more these salts were used the less fertile the soil became. Organic growers followed this model. They substituted organic inputs for chemical ones, but they too bared the soil and lost fertility.

Throughout this de-evolution, farmers were fascinated with cutting into the soil food web and smelling the rich, fertile smell of Actinomycetes while preparing their seedbeds. Chemical-free succession planting with minimal tillage and humified compost crossed almost no one’s mind. Everyone wanted to prepare a smooth seedbed. Almost no one sowed a mixture of seeds onto the soil and grazed, mowed or rolled down existing vegetation—even throwing down a bit of mulch in bare spots—knowing that something would grow as long as the soil was covered. Lost in the mists of antiquity, the idea of maintaining soil cover was so new it was ignored.

Now comes the question, can 21st century agriculture address the roots of the problem?

Part III: Meeting the Challenge

Change in agriculture is up against the likes of D.C. Edmeades, Hamilton, New Zealand, author of a lengthy paper entitled Pseudo-science: a threat to agriculture? (

Edmeades brandishes the buzzword “pseudo-science” 37 times in a ten page paper intended to slander Dr. Christine Jones’s admirable work on soil microbiology, cultivation, artificial nitrogen fertilization and carbon sequestration—topics much in need of investigation if we are to arrest the alarming weather trends threatening our economy, safety and well-being. He trots out the fallacious assumption that we must put more land under cultivation to feed world population. And his arguments for continuing the NPK/toxic approach show his 19th century understanding of chemistry hasn’t caught up with cutting edge soil biology, biochemistry and biophysics. He makes no mention of quantum mechanics and chaos theory. He would replace what he calls “pseudo-science” with something illogical and unsustainable that has long been refuted, outdated and surpassed. His paper is replete with references, graphs, sophistries and scientific double-talk designed to confuse the unwary and uninformed.

Inertia to Change

Top agricultural authorities whose livelihoods depend on current agricultural practices tell us the world will run out of food if we don’t keep intensifying the war on nature, disregarding how this devastates soils, pollutes ecosystems and fuels global warming. Yet, the further we go along this path the closer we come to tipping points where the earth’s self-correcting life support systems spiral out of control.
Evil exists to awaken our appreciation of good. The pity is we often wake up when what is good is gone. What is obvious is we need to reverse the degradation of the land already under cultivation and improve its productivity. To do that we need to reduce mechanical cultivation, nitrogen fertilisation, contamination, erosion, overgrazing, monocropping, deforestation and desertification while we improve ground cover, build soil biology, restore nitrogen fixation and practice controlled rotational grazing, biological no-till and diverse intercropping—all proven alternatives. If, along the way, permaculture and biodynamics give us tools with which to achieve these ends with ease and grace, what could be better?

What Nature Does

What nearly everyone missed, as agriculture borrowed from its future, was looking at how nature works. Nature builds fertile soils without ploughing as farmers do. Nature’s army of soil workers come up to feed and breathe, and then tunnel down again, aerating the soil in the finest ways wherever they go. In the daytime, most of these animals hang out in the near vicinity of plant roots where the soil biology is rich. When pooping and peeing they give the soil food web freshly digested remnants of what they consumed at the verges of their sub-surface habitat. This feeds new growth at the finest level while recycling surface litter in a steady way. Left to itself, nature’s intelligence cultivates the soil in ways we can’t duplicate. What we can do is support nature’s work.

Look at earthworms munching on decaying roots, leaves, microbes and other tasty morsels. They require oxygen to metabolize what they eat, so when need arises they eat out air passages and cast off the soil they excavate at the surface. Although soil animals give off carbon dioxide from the foods they consume, they oxygenate the soil as they travel. Many earthworms prefer a bacterial diet, though some of the larger types prefer fungi. Yet ants are the best fungal farmers, complementing earthworms while building and regulating the soil food web’s activities.


When the Masanobu Fukuoka* and Alan Savory† visions of building a living blanket to regenerate the earth came along with diversified no-till summer/winter cropping or grazing, most mainstream farmers dismissed this as nonsense and impractical. The gulf between their cultural beliefs and how nature actually works was too great. Yet, a few serious, large-scale farmers and stockers used these ideas to regenerate their farm and livestock operations, thus building a partnership with nature that improved yields and lowered costs.

There it was—plant with as little disturbance as possible while feeding, balancing and enriching the ecology. Harvest warmth, light, water, carbon dioxide and nitrogen out of the atmosphere for free. While academics ignored such stuff, these early pioneers proved storing warmth and light in the soil’s humus flywheel worked. Foreseeably this would continue to build life into the environment into the future.

Although often ignored, humus acts as a magnet for hydrogen, especially when this prince of protons is in the form of water. Carbon attracts hydrogen. That’s basic chemistry. When plants cover the earth’s surface, they soak up warmth, light, CO2 and H2O, fixing nitrogen and improving rainfall.

Obviously if planting trees restored forests this would help arrest global warming. It may seem a no-brainer to oppose coal mining and plant trees. The worry is forests build their carbon onto the soil, which makes them subject to harvest and fire. Holistic pasture management builds carbon into the soil as humus. Environmentalists on the one hand, and conventional farmers on the other, need to shed their misconceptions and join forces. Prejudice is our enemy. Grazing livestock is only a moral problem if we don’t do it constructively.

Part IV, There Can Be an Answer, Let It Be

“A leader takes people where they want to go. A great leader takes people where they don’t necessarily want to go, but ought to be.” –Rosalynn Carter

What built the world’s most fertile prairies, steppes, savannahs and plains were herds of animals and their predators. Unassisted, nature isn’t going to re-forest the Sahara without first growing pastures, because forests only occur where rainfall is abundant. Observation, the basis of intelligence, shows periodic intensive grazing is the opposite of confinement animal feeding operations (CAFOs). The true costs of CAFOs and their stream of environmental pollution, waste and suffering are not all paid at the supermarket, but rather in physical and social dysfunction.

Though the Sahara was forested 15,000 years ago, today can we re-plant such forests without first improving rainfall and water retention? We will have to re-vegetate step-wise, as forests require lots of rain. We need grazers and chicken herders to store carbon in pastures with well-run pastoral operations. We can grow grass quicker with less water in less time than we can grow forests, and grass stores carbon in the soil. Pastoral animals maximize biomass gains when they eat old growth and recycle it as fertilizer while making way for new growth.

The Path

The regenerative practices of farmers who pay attention and cooperate with nature are cheap and productive. Though it takes intelligence and hard work, the quality of what these farmers send to markets is superior. At the same time they cure rather than contribute to global warming. As farmers and environmentalists learn to read from the book of nature they will discover the best practices of restorative farming, grow quality products and prosper from their partnership with nature. Meanwhile regenerative farmers can take advantage of collapsed ventures that extracted value and left an empty husk behind for somebody who knows how to use it. Look ahead to the glass half full and see revegetating as an opportunity we need to embrace.

Our job is to open public eyes and show that the true cost of the war on nature is hidden in plain sight, and it will dawn on everyone in time. The simple efficiency of working with nature to build a thriving, long-term, regenerative agricultural base will change agriculture. It is expensive to wage war with nature, and the will to continue along these lines is dying. Already first world agricultural universities are running out of new blood for this agenda. Why? Current practices lock participants into spiralling debt, toxic technology and soil degradation—more subtle but comparable to living in a battle zone. Fresh out of high schools, today’s students don’t want careers in a hazardous, toxic, depressing, morass of debt.

More and more examples show how vegetation on the earth’s surface soaks up warmth, light and CO2—which otherwise fuel global warming. New farmers need only realize their opportunities to educate themselves. The information age ensures the necessary information is accessible as long as farmers are discerning of truth. The farmers of today and tomorrow have an opportunity to take up nature’s bounty of nitrogen, carbon, hydrogen, oxygen and sulphur and turn these gifts of the heavens into the means for social health, wealth and happiness.

In A Nutshell

It’s urgent we understand how nature works. Nature is a system. Everything is interwoven and interactive at the finest levels everywhere. Farming starts with the soil food web and interacts with everything all the way to the farthest stars. Life processes start with hydrogen, which is everywhere and in all things. Hydrogen joins with carbon, cinder of the first stars, and its siblings, nitrogen and oxygen. With a little help from a few soil minerals, sulphur, the catalyst, along with hydrogen, carbon, nitrogen and oxygen—free from the atmosphere—incorporate warmth and light as living protoplasm.
Nitrogen is an amazing player. As the basis of awareness, memory, sensation and desire, it forms the genetic blueprints for life and its reproduction. Carbon provides the framework, as we are all carbon based life forms. Like money in the market, oxygen is life’s medium of exchange, the basis for activity. Since organization arises at boundaries and organization is the basis of life, hydrogen with its infinitesimal content and infinite context is the universal source of organization, the basis of life. Plants take in CO2 and give off O2. Animals take in O2 and give off CO2. With sulphur for ignition, we have nature’s chemistry in a nutshell.

We can also talk about the five percent of biomass that comes from the soil—the cations, sand, clay and humus that interact with the atmosphere’s free gifts which make up the other ninety-five per cent of our biomass. There’s never been greater opportunity to cover the earth’s surface with living organisms, soak up warmth, light and CO2, maximizing vegetative growth and digestive activity. This will end global warming.
When market forces drive change, the rest will follow. Re-vegetate the earth at every opportunity. Seize the initiative. Build life back into the land. Pioneer a new agriculture in partnership with nature. Invent a new way of farming that knits together well-meaning but misguided sectors of society. There’s a long road ahead with health, wealth and satisfaction along the way. My book Quantum Agriculture, Biodynamics and Beyond is an early step in this direction.

Radionic instruments code the vibrational quality of substance in terms of a chain of numbers.

Radionics Cards used by Quantum Agriculture Radionic Instruments are printed with magnetic ink on high quality photo paper. They work best with Quantum Ag Instruments.

Magneto Geometry was developed by Malcolm Rae, one of a group of pioneering Doctors, Homoeopaths and Radionic researchers working in Britain from the 1940s through to the 1980s. This group included Dr. George Laurence, founder of the Psionic Medical Association; George de la Warr; Dr Aubrey Westlake; Dr Guyon Richards; John Da Monte; David Tansley, and others.

Rae himself had a distinguished career in the Royal Navy, where he rose to the rank of Commander during World War II. While in the Navy he was introduced to Radionics by a Captain Atkinson. Although he rejected Radionics at the time, he later became interested in it during the 1950s and carried on to develop remarkable new techniques and instruments. Some of this work is described in detail in the book DIMENSIONS OF RADIONICS by Tansley, Rae and Westlake (ISBN 0-914732-29-3).

At first Rae worked with ‘conventional’ Radionic instruments, derived from the work of Abrams and Drown. These instruments coded the vibrational quality of a selected substance in terms of a chain of numbers – Diamond, for example, is 442337. Rae discovered that distinct pendulum reactions are obtained at certain angular relations to the earth’s magnetic field. These may be marked within the circle (see below) as radial lines. The resolution of each line is to one degree of arc. The result is a system of cards, two of which are illustrated below. There are currently more than 25,000 cards in the MGA system.


These cards are used in various instruments designed by Rae, Nick Franks and Hugh Lovel, and may also be used in the contemporary range of instruments.  Kelly Research ANALYSER is used to build up a picture of the quality of the patient’s energy field  to discover any disturbances to it. The basic method is Location (e.g. Respiratory system) – Factor (e.g. Infection) – and Correction (e.g. Homeopathic remedy).

Quantum Ag Radionic Instrument with manual available from Quantum Agriculture Consultants worldwide. for more information.